

Keramische Bauteile

Georg Rutz AG

Keramik

Keramik – das Material für neue Perspektiven im zukunftsorientierten Produktdesign.

Wenn man Keramik erwähnt, denken die meisten Menschen automatisch an Töpfer- und Porzellanwaren. Tatsächlich kann die Geschichte der Keramik mehr als 10'000 Jahre zurück verfolgt werden. Heute stellen diese anorganischen, nichtmetallischen Materialien eine Revolution in der Material-Technologie dar.

Neue Prozesse und Fortschritte im Formen und den Produktionstechniken haben dazu geführt, dass heute Probleme gelöst werden können, die früher als unüberwindbare technische Herausforderung galten.

Die heutige Keramik hat aber nur noch wenig Ähnlichkeit mit ihren Urpsrüngen.

Die einzigartigen und erstaunlichen physischen, thermischen und elektrischen Eigenschaften öffnen die Türen zu einer neuen Entwicklungswelt. Keramik stellt eine rentable und leistungsfähige Alternative zu Materialien wie Glas, Metall und Kunststoff dar.

Die Vorteile keramischer Bauteile auf einen Blick:

- Elektrische Isolation
- Mechanische Festigkeit
- Geringe Dichte
- Verschleissfestigkeit und Härte
- Kriechstromfest
- Hochtemperaturbeständig
- Temperaturwechselbeständig
- Klima- und alterungsbeständig
- Umweltverträgliche Entsorgung
- Chemische Beständigkeit
- Lebensmittelecht

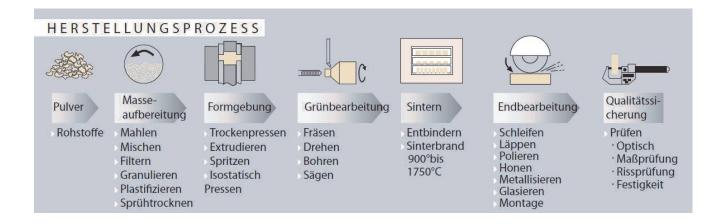
Georg Rutz AG

- Keine Korrosion
- Vibrationsbeständig
- Leichter als Metalle
- Benötigen keine Schmierung

JBC – Ihr Experte für keramische Komponenten

Seit 2003 produziert JBC Wälzlager, keramische Kugeln und keramische Komponenten für zahlreiche Industriekunden. Obwohl zahlreiche weitere Materialien angeboten können, hat sich unser Fokus auf 3 Rohstoffe gelegt:

Siliciumnitrid (Si₃N₄)


Zirkonoxid (ZrO₂)

Aluminumoxid (Al₂O₃₎

Die meisten unserer Produkte werden durch isostatisches Kaltpressen geformt. Siliciumnitrid-Produkte werden im Gas-Sinter-Verfahren hergestellt, während Zirkonoxid-Produkte im normalen Druck-Sinter-Prozess verarbeitet werden.

Die Vorteile des isostatischen Kaltpressens stellen die gleichbleibende Qualität unserer Produkte sicher. Gleichzeitig sind wir auch in der Lage, andere Formmethoden wie z.B. Trockenpressen, Schlickergiessen oder Spritzgiessen anzuwenden. Unsere Fertigung ist mit modernsten Maschinen ausgerüstet und kann nahezu jede Verarbeitungsmethode anwenden.

Unser hauseigenes Prüfcenter stellt sicher, dass jedes Produkt, egal mit welcher Methode hergestellt, unser Werk in einwandfreier Qualität verlässt.

Siliciumnitrid (Si₃N₄)

Siliciumnitrid (Si₃N₄) spielt unter den Nitridkeramiken eine derzeit klar dominierende Rolle und verfügt über eine bislang von anderen Keramiken nicht erreichte Kombination von hervorragenden Werkstoffeigenschaften, wie

- hohe Zähigkeit
- hohe Festigkeit, auch bei hohen Temperaturen
- ausgezeichnete Temperaturwechselbeständigkeit
- hervorragende Verschleissbeständigkeit
- niedrige Wärmedehnung
- mittlere Wärmeleitfähigkeit
- gute chemische Beständigkeit umfasst.

Diese Eigenschaftskombination ergibt eine Keramik, die extremsten Einsatzbedingungen gerecht wird. Siliciumnitridkeramik ist somit prädestiniert für Maschinenbauteile mit sehr hohen dynamischen Beanspruchungen und Zuverlässigkeitsanforderungen.

Um dichte Siliciumnitridkeramik herzustellen, wird von einem mit Sinteradditiven (Al_2O_3 , Y_2O_3 , MgO etc.) versetzten Submicron- Si_3N_4 -Pulver ausgegangen, das nach dem Formgebungsprozess bei Temperaturen zwischen 1.750 bis 1.950 °C gesintert wird. Bedingt durch die Zersetzung von Si_3N_4 zu (Si und N_2) ab ca. 1.700 °C bei Normaldruck der Sinteratmosphäre wird während des Sinterns der N_2 -Druck erhöht, um der Zersetzung entgegenzuwirken.

Siliciumnitrid wird als Sonderwerkstoff in der Lagertechnik für Hybridlager (Wälzkörper aus Si_3N_4) und Vollkeramiklager (Wälzkörper und Laufringe aus Si_3N_4) eingesetzt.

Zirkonoxid (ZrO₂)

Zirkonoxid ist ein äusserst widerstandsfähiges Material. Es verträgt Temperaturen weit über dem Schmelzpunkt von Aluminium und korrodiert nicht. Ausserdem hat es eine geringe Thermoleitfähigkeit. Bei Temperaturen von über 600°C ist es elektrisch leitend und wird oft in Sauerstoff-Sensorzellen in hohen Temperaturinduktionsbrennöfen verwendet. Seine Eigenschaften sind:

- höchste Kantenfestigkeit
- Temperaturbeständig bis zu 2400 °C
- Hohe Dichte
- hohe Biegefestigkeit (zäh)
- schlechte Thermalleitfähigkeit (20% von Aluminium)
- chemisch träge
- höchste Oberflächenquailität
- hohe Masse (Dichte 6,0 g/cm3)
- hohe Wärmeausdehnung (ähnlich Stahl)

Georg Rutz AG

- extrem Wärmeisolierend
- elektrisch isolierend
- Farbe: gelb, weiss oder elfenbein

Aluminumoxid (Al₂O₃₎

Der meistverbreitete und kostengünstigste Werkstoff für keramische Komponenten. Die Rohstoffe für diesen Werkstoff sind ausreichend verfügbar und deshalb preiswert. Die Kombination aus ausgezeichneten Eigenschaften mit dem guten Preis sorgen dafür, dass Aluminiumoxyd eine breite Anwendungspalette hat.

- Hohe Festigkeit
- Hohe Biegefestigkeit
- thermisch stabil
- Exzellente dielektrische Eigenschaften
- Tiefe elektrische Konstante

Vergleichstabelle Stahl/Siliciumnitrid/Zirkonoxid/Aluminiumoxid

		Einheit	Stahl	Si ₃ N ₄	ZrO ₂	Al ₂ O ₃
Dichte		g/m³	7.85	3.20-3.30	6.05	3.95
Härte (Knoop, 100g)	(HV)		700	1500-1800	1200	1800
	(HRC)		62	75-80	70	80
Druckfestigkeit		MPa	1200	3000	1800	2100
Biegebruchfestigkeit		MPa	2400	200	300	220
Elastizitätsmodul		GPa	208	300-320	210	380
WEIBULL-Modul			>10	>20	>15	>10
Poisson-Zahl			0.30	0.26	0.30	0.27
Offene Porosität		%	0	0	0	0
Max. Einsatztemperatur		°C	300	800	550	1850
Ausdehnungskoeeffizient		10 ⁻⁶ /K	10.0	3.2	10.5	9.1
Spezifische Wärme (25°C)		J/kgK	470	750	450-	850-
Wärmeleitfähigkeit		W/mK	30-40	18	2	25
Spez. Widerstand		Ω * mm ² /m	0.1-1	10 ¹⁸	10 ¹⁵	10 ⁸
Korrosions-Resistenz			schlecht	gut	gut	gut
Abnutzung bei Nichtschmierung			gross	klein	klein	klein
Magnetisch			Ja	nein	nein	nein
Zentrifugalkraft			gross	klein	gross	mittel

Anwendungsschwerpunkte

Anwendung	Si ₃ N ₄	ZrO ₂	Al ₂ O ₃
Gleitringe		+	+
Kugeln	+	+	+
Kolben, Plunger	+	+	+
Lager, Wellen	+	+	+
Spalttöpfe		+	
Wellenschutzhülsen		+	+
Dichtscheiben		+	+
Ventilsitze, -kegel	+	+	+
Düsen	+	+	+
Führungselemente	+	+	+
Schneidwerkzeuge	+	+	
Maschinenbeläge	+	+	+
Messrohre		+	+
Umformwerkzeuge	+	+	
Zentrierungen	+	+	

Keramikkugeln

Materialien:	Siliciumnitrid (Si ₃ N ₄), Zirkonoxyd (ZrO ₂) und Aluminiumoxyd (Al ₂ O ₃)
Präzision:	G 3 – G 20

Im Vergleich mit Stahl:

- leichter
- grösseres Elastizitätsmodul
- tieferer Reibungskoeffizient
- tieferer Temperatur-Ausdehnungskoeffizient
- sauberere Oberflächenbearbeitung
- grössere Härte bei Hochtemperaturen
- Kein Rosten
- Schmierungsfrei
- Korrosionsbeständig.

Anwendungsbeispiele:

Ventilkugeln, Vakuumpumpen, Kugellager, Präzisionskalibrierung, Isolatoren, Schaltkugeln, u.v.m.

Georg Rutz AG

Grad	Kugeldurchmesser Variation um	Sphärische Abweichung (nicht mehr alsum)	Oberflächen-Rauheit um
G 3	0.08	0.08	0.012
G 5	0.13	0.13	0.020
G 10	0.25	0.25	0.025
G 20	0.50	0.50	0.040

Georg Rutz AG

Keramikkugellager

Wählen Sie zwischen Voll-Keramikkugellagern und Hybdrid-Kugellagern mit keramischen Kugeln.

Material Käfig:	PTFE, NYLON, PEEK, Stahl oder ohne (vollrollig)
Präzision:	P0 für Vollkeramiklager und P0-P4 für Hybridlager

Im Vergleich zu reinen Stahl-Lagern:

- höhere Geschwindigkeit durch leichteres Gewicht
- Präziser durch grössere Härte
- Langlebiger dank weniger Abrieb
- Einsatz bei höheren Temperaturen möglich
- Geringere thermische Ausdehnung
- Geringere thermische Deformation
- Braucht keine Schmierung
- Rostfrei
- Säure– Basen– und Salzresistent
- Lebensmittelgeeignet
- Nicht-Magnetisch

Während die Hybrid-Kugellager vor allem durch Geschwindigkeit/Gewicht, Präzision/Härte und Langlebigkeit überzeugen, bieten Voll-Keramikkugellager auch alle anderen oben genannten Vorteile. Siliciumnitrid-Lager weisen eine etwas höhere Qualität aus als Zirkonoxidlager, da sie höheren Temperaturen standhalten und resistenter gegenüber Säuren, Basen und Salzen sind.

Anwendungsbeispiele:

Hochleistungsmotoren, Hochpräzisionsmaschinen, Dentalinstrumente, Inline-Skates, u.v.m.

Georg Rutz AG

Präzisionsgrad Voll-Keramik-Kugellager

Standard	Präzisionsgrad					
ISO	Normal	Class 6	Class 5	Class 4	Class 3	
China & GB	G	E	D	С	В	
ANSI (USA)	ABEC 1	ABEC 3	ABEC 5	ABEC 7	ABEC 9	
DIN	P0	P6	P5	P4	P2	
JIS (Japan)	Grade 0	Grade 6	Grade 5	Grade 4	Grade 2	

Gehäuse- (Einsatz-) Lager mit balligem Aussenring und Gewindestiftbefestigung am Innenring

Тур	Dimension (in mm)						
	d	D	В	S	С	ds	G
UC201	12	40	27.4	11.5	14	M5x0.75	4
UC202	15	40	27.4	11.5	14	M5x0.75	4
UC203	17	40	27.4	11.5	14	M5x0.75	4
UC204	20	47	31	12.7	17	M5x0.75	5
UC205	25	52	34.1	14.3	17	M5x0.75	5
UC206	30	62	38.1	15.9	19	M5x0.75	5
UC207	35	72	42.9	17.5	20	M8x1.00	7

	\$	
	d	b
	ř	3
	ď	ō
	•	_
	q	b
	ζ	3
	Ξ	3
	-	_
	4	4
	7	
	9	b
	-	
	_	4
1	<u> </u>	_

	Dimension (mm)			
Тур	d	D	В	
6000	10	26	8	
6001	12	28	8	
6002	15	32	9	
6003	17	35	10	
6004	20	42	12	
6005	25	47	12	
6006	30	55	13	
6007	35	62	14	
6008	40	68	15	
6200	10	30	9	
6201	12	32	10	
6202	15	35	11	
6203	17	40	12	
6204	20	47	14	
6205	25	52	15	
6206	30	62	16	
6207	35	72	17	
6208	40	80	18	
6300	10	35	11	
6301	12	37	12	
6302	15	42	13	
6303	17	47	14	
6304	20	52	15	
6305	25	62	17	
6306	30	72	19	
6307	35	80	21	
6308	40	90	23	
6403	17	62	17	
6404	20	72	19	

	Dimension (mm)				
Тур	d	D	В		
6405	25	80	21		
6406	30	90	23		
6407	35	100	25		
6408	40	110	27		
6800	10	19	5		
6801	12	21	5		
682	15	24	5		
6803	17	26	5		
6804	20	32	7		
6805	25	37	7		
6806	30	42	7		
6807	35	47	7		
6808	40	52	7		
6900	10	22	6		
6901	12	24	6		
6902	15	28	7		
6903	17	30	7		
6904	20	37	9		
6905	25	42	9		
6906	30	47	9		
6907	35	55	10		
608	8	22	7		
609	9	24	7		
628	8	24	8		
629	9	26	8		
688	8	16	5		
689	9	17	5		
698	8	19	6		
699	9	20	6		

Georg Rutz AG

Keramische Komponenten

Dichtscheiben	Die diamantähnliche Härte verhindert, dass Schmutz, Metallspän
	oder Kalk Schäden an der Scheibe hervorrufen. Die extrem gute

gute Korrosionsbeständigkeit sichert den Dichtelementen eine lange Lebensdauer.

Ventilgarnituren Die Ventilgarnituren aus Kugel und Sitz werden durch Klemmen, Schrauben oder Schrumpfen befestigt und tragen zur Lösung von Abrasions- und Kavitationsprob-

lemen in Regel- und Absperrarmaturen bei.

Kolben und Plunger

Dank der hochglanzpolierten Oberfläche der Keramikteile ist die Reibung und damit die auftretende Reibungswärme minim. Festkörper können die diamantharte Oberfläche nicht angreifen. Durch das geringe spezifische Gewicht müssen geringere Massen beschleunigt bzw. abgebremst werden und der Antrieb kann entsprechend kleiner ausgelegt werden.

Düsen

Der gleichbleibende Düsenquerschnitt verbunden mit optimaler Sprühmittelverteilung (selbst bei aggressiven Medien problemlos) überzeugen. Stillstandzeiten und Reparaturkosten der Prozesseinheiten werden auf ein Minimum reduziert.

Spalttöpfe

Aufgrund magnetischer Kopplung wird die Chemiepumpe hermetisch abgedichtet. Die Gleiteigenschaften der Keramikkolben sorgen bei Hochdruckpumpen für längere Standzeiten der Dichtelemente.

Gleitringe

Besonders bei trockenlaufgefährdeten Schmutz- und Chemiepumpen sowie bei Gleitringdichtungen ohne Sperrflüssigkeit und Fremdspülung bewährt.

Wellenschutzhüllen

Die exzellente chemische Beständigkeit, die gute Wärmeleitfähigkeit und die Gewichteinsparung machen keramische Werkstoffe zur idealen Wahl im Pumpenbau zum Lagern, Stützen und Führen.

Georg Rutz AG

<u>Georg Rutz AG</u>

Ein Beispiel: Keramische Ringe für Tampon-Druckmaschinen

Material Zirkonoxyd (ZrO₂)

Verwendung Dichtungsringe als Ersatz für Metallringe

Dichte grösser als 6,05 g/cm³. Lichtdurchlässig. Nützt sich nicht ab und verlängert so die Servicezeit wesentlich. Verhindert Lecken der Tinte. Vorteile

Rundbreite weniger als 0,1 mm. Ein- oder zweiseitiger Rand möglich. Dicke be-

trägt weniger als 3 mm.

Einheit No.	Innendurchmesser	Aussendurchmesser	Höhe
	(mm)	(mm)	(mm)
A001	55	65	12
A002	60	70	12
A003	65	75	12
A004	70	80	12
A005	75	85	12
A006	80	90	12
A007	85	95	12
A008	90	100	12
A009	95	105	12
A010	100	110	12
A011	105	115	12
A012	110	120	12
A013	115	125	12
A014	120	130	12
A015	125	135	12
A016	130	140	12

Georg Rutz AG

Georg Rutz AG

Anwendungsbeispiele

Die Forderung nach höheren Leistungen, längeren Standzeiten und geringeren Wartungskosten ist gestiegen und die Grenzen der konventionellen Maschinenbau-Werkstoffe werden überschritten. Keramische Werkstoffe eröffnen hier neue Perspektiven. Sehen Sie hier einige Anwendungsbeispiele, auch wenn diese noch längst nicht alle Möglichkeiten zeigen:

Georg Rutz AG

Ihre Anwendung

Georg Rutz AG

Genug der Worte - lasst Taten folgen!

Wir hoffen, dass wir Ihnen mit dieser Information einige Vorteile der keramischen Bauteile von JBC aufzeigen konnten.?

Wirklich überzeugen werden Sie aber die realen Komponenten, die Sie benötigen. In einem sorgfältigen Bedarfsabklärungsgespräch lassen wir uns von Ihnen erklären, welche Lösung Sie suchen. Mit unserem Lieferwerk und den dort zur Verfügung stehenden Technikern suchen wir dann das optimale Produkt für Sie und besorgen Testmuster. Wir sind zuversichtlich, dass die Muster Sie ebenso beeindrucken wir bereits viele andere Kunden vor Ihnen, denn wir vertrauen in die Qualität von JBC. Sind alle Tests bestanden, steht einer Bestellung nichts mehr im Weg und wir freuen uns, Sie nun auch noch von unseren Vorteilen als Lieferant zu überzeugen:

- Ihr Problem ist unsere Herausforderung wir suchen die passende Lösung und lassen Sie nicht alleine.
- Schnelle Reaktionszeit: wir reagieren umgehend oder spätestens am gleichen Tag auf Ihre Anfrage und halten Sie stets auf dem laufenden keinerlei Ungewissheit für Sie.
- Keine leeren Worte, nur erfüllte Versprechungen.
- Freundlichkeit ist bei uns die Basis bei Kundenkontakten.
- Grosses Lager bürgt für rasche Lieferung.
- Kompetente Beratung
- 24 h Online Shop für Ihre Bestellungen
- ISO-Zertifiziert

Nennen Sie uns heute noch Ihren Bedarf und wir bieten Ihnen gerne die dazu passenden Produkte an. Wir freuen uns, Sie auch mit den bewährten JBC-Produkten beliefern zu dürfen.

Ihre

Ihre Notizen:

Ihre **exklusive JBC-Vertretung** in der Schweiz:

Georg Rutz AG

Grabenstrasse 1 CH– 8952 Schlieren Tel +41 (044) 733 73 00

Fax +41 (044) 730 58 21

http://www.georg-rutz.ch

info@georg-rutz.ch

Shop.georg-rutz.ch